Inertia Weight Adaption in Particle Swarm Optimization Algorithm
نویسندگان
چکیده
In Particle Swarm Optimization (PSO), setting the inertia weight w is one of the most important topics. The inertia weight was introduced into PSO to balance between its global and local search abilities. In this paper, first, we propose a method to adaptively adjust the inertia weight based on particle’s velocity information. Second, we utilize both position and velocity information to adaptively adjust the inertia weight. The proposed methods are then tested on benchmark functions. The simulation results illustrate the effectiveness and efficiency of the proposed algorithm by comparing it with other existing PSOs.
منابع مشابه
Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملChaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks
Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...
متن کاملParticle Swarm Optimization with Smart Inertia Factor for Combined Heat and Power Economic Dispatch
In this paper particle swarm optimization with smart inertia factor (PSO-SIF) algorithm is proposed to solve combined heat and power economic dispatch (CHPED) problem. The CHPED problem is one of the most important problems in power systems and is a challenging non-convex and non-linear optimization problem. The aim of solving CHPED problem is to determine optimal heat and power of generating u...
متن کاملParticle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution
This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization PSO . The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a...
متن کاملSolving Dna Sequence Assembly Using Particle Swarm Optimization with Inertia Weight and Constriction Factor
This paper introduces an effectual technique to solve the DNA sequence assembly problem using a variance of the standard Particle Swarm Optimization (PSO) called the Constriction factor Particle Swarm Optimization (CPSO).The problem of sequence assembly is one of the primary problems in computational molecular biology that requires optimization methodologies to rebuild the original DNA sequence...
متن کامل